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Abstract

Diabetes is a chronic disease with a huge and growing socio-economic
burden affecting individuals, families and the whole society. In this pa-
per, we propose an optimal control approach modeling the evolution
from pre-diabetes to diabetes with and without complications. We show
the existence of an optimal control and then use a numerical implicit
finite-difference method to monitor the size of population in each com-
partment. Our model shows that, using optimal control, the number of
diabetics with and without complications can be significantly reduced
in a period of 10 years.

Keywords: Diabetes, mathematical model, stability analysis, simulation,
optimal control

1 Introduction

According to the World Health Organisation (WHO), the term of diabetes
mellitus describes a metabolic disorder of multiple aetiology characterized
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by chronic hyperglycemia with disturbances of carbohydrate, fat and protein
metabolism resulting from defects in insulin secretion, insulin action, or both.
Generally, diagnosis of diabetes is based on the level of fasting plasma glu-
cose concentration (FPGC). Normoglecymia, pre-diabetes (also said impaired
fasting glucose) and diabetes are respectively defined by a FPGC less than
110mg/dl, between110mg/dl and 126mg/dl, and greater than 126mg/dl [11].

According to the last International Diabetes Federation (IDF) report, more
than 370 million people are living with diabetes worldwide (8.5% of adult
population) and nearly 300 million people are in the pre-diabetic stage (6.5%
of adult population). Consequently, the socio-economic burden of diabetes is
huge with nearly five million deaths and more than 470 billion USD spent on
healthcare in 2012 [9].

Due to its chronic nature with severe complications (cardiovascular disease,
blindness, kidney failure and lower limb amputation), diabetes needs costly and
prolonged treatment and care, affecting individuals, families and the whole
society. The American diabetes Association estimates that the yearly cost
of treating a person with diabetes is over 5 times more than for a person
without diabetes [1]. Other studies estimate that the treatment of a diabetic
patient with complications is 2 to 5 times higher than for a diabetic without
complications but the burden of diabetes goes beyond the limits of economical
problems by incurring indirect and intangible costs [3]. Consequently, the
burden of diabetes can be reduced by controlling the number of people evolving
from the stage of pre-diabetes to the stages of diabetes with and without
complications. Following previous mathematical models on diabetes and pre-
diabetes ([4], [5], [6]) the present paper proposes an optimal control approach
modeling the dynamics of a population with diabetes.

2 Formulation of the model

We consider the model developed by Boutayeb and Chetouani [4]:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dE(t)
dt

= I − (μ + β3 + β1)E(t)

dD(t)
dt

= β1E(t) − (μ + β2)D(t) + γC(t)

dC(t)
dt

= β3E(t) + β2D(t) − (μ + γ + ν + δ)C(t)

Where:

• E = E(t) Number of pre-diabetic peopole

• D = D(t) numbers of diabetics without complications

• C = C(t) numbers of diabetics with complications



An optimal control approach to the dynamics of diabetes 2775

• N = N(t) = E(t) + C(t) + D(t) denotes the size of the population of
diabetics and pre-diabetics at time t

• I(t) denotes the incidence of pre-diabetes

• μ : natural mortality rate,

• β1 : the probability of developing diabetes ,

• β2 : the probability of a diabetic person developing a complication,

• β3 : the probability of developing diabetes at stage of complications ,

• γ : rate at which complications are cured,

• ν : rate at which patients with complications become severely disabled,

• δ : mortality rate due to complications,

The controlled model is given by the following system

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dE(t)
dt

= I − (μ + (β3 + β1)(1 − u(t)))E(t)

dD(t)
dt

= β1(1 − u(t))E(t) − (μ + β2(1 − u(t)))D(t) + γC(t)

dC(t)
dt

= β3(1 − u(t))E(t) + β2(1 − u(t))D(t) − (μ + γ + ν + δ)C(t)

(1)

Where u is a control

The objective function is defined as J (u) =

∫ T

0

(
D(t) + C(t) + Au2(t)

)
dt

Where A is a positive weight that balances the size of the terms. U is the
control set defined by U = {u/u is measurable, 0 ≤ u(t) ≤ 1, t ∈ [0, T ]}.
The objective is to characterize an optimal control u∗ ∈ U satisfying

J (u∗) = min
u∈U

J (u)

3 The optimal control: existence and charac-

terization

We first show the existence of solutions of the system, thereafter we will prove
the existence of optimal control.
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3.1 Existence and Positivity of Solutions

Theorem 3.1.
The set Ω = {(E, D, C) ∈ R

3/0 ≤ C, D, E ≤ I
μ
} is positively invariant under

system (1).

Proof :

dE(t)

dt
= I − (μ + (β3 + β1)(1 − u(t)))E(t)

≥ −(μ + (β3 + β1)(1 − u(t)))E(t)

Then using Gronwall’s inequality, E(t) ≥ E(0)e(−
� T
0 (μ+(β3+β1)(1−u(t)))dt)

=⇒ E(t) > 0
Assume that there exists some time t∗ > 0 such that D(t∗) = 0 , other variables
are positive and D(t) > 0 for t ∈ [0, t∗[.

Then from
dD(t)

dt
= β1(1 − u(t))E(t) − (μ + β2(1 − u(t)))D(t) + γC(t) we

obtain:

d
(
D(t)e(μ+β2)t

)
dt

= e(μ+β2)t [β1(1 − u(t))E(t) + β2u(t)D(t) + γC(t)]

Integrating this Equation from 0 to t∗ gives:

∫ t∗

0

d
(
D(t)e(μ+β2)t

)
dt

dt =

∫ t∗

0

e(μ+β2)t [β1(1 − u(t))E(t) + β2u(t)D(t) + γC(t)] dt

=⇒ D(t∗) = e−(μ+β2)t∗

[
D(0) +

∫ t∗

0

e(μ+β2)t [β1(1 − u(t))E(t) + β2u(t)D(t) + γC(t)] dt

]

=⇒ D(t∗) > 0 which contradicts D(t∗) = 0. Consequently, D(t) > 0 ∀t ∈
[0, T ].
From

dC(t)

dt
= β3(1 − u(t))E(t) + β2(1 − u(t))D(t) − (μ + γ + ν + δ)C(t)

=⇒ dC(t)

dt
≥ −(μ + γ + ν + δ)C(t)

(because E(t) > 0 and D(t) > 0)
Then using Gronwall’s inequality C(t) = C(0)e−(μ+γ+ν+δ)t > 0

On the other hand
dN(t)

dt
= I − μN(t) − (ν + δ)C(t) ≤ I − μN(t)

So N(t) ≤ I
μ
−

(
I
μ
− N(0)

)
e−μt =⇒ N(t) ≤ I

μ

Theorem 3.2.
The controlled system (1) that satisfies a given initial condition
(E(0), D(0), C(0)) ∈ Ω has a unique solution.
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Proof : Let X =

⎛
⎝ E(t)

D(t)
C(t)

⎞
⎠ and ϕ(X) = Xt =

⎛
⎜⎜⎜⎝

dE(t)
dt

dD(t)
dt

dC(t)
dt

⎞
⎟⎟⎟⎠ so the system

(1) is rewritten in the following form: ϕ(X) = Xt = AX + B were

A =

⎛
⎝ −(μ + (β3 + β1)(1 − u(t))) 0 0

β1(1 − u(t)) −(μ + β2(1 − u(t))) γ
β3(1 − u(t)) β2(1 − u(t)) −(μ + γ + ν + δ)

⎞
⎠

and B =

⎛
⎝ I

0
0

⎞
⎠

then ‖ϕ(X1)−ϕ(X2)‖ ≤ ‖A‖.‖(X1 −X2)‖ . Thus, it follows that the function
ϕ is uniformly Lipschitz continuous. So from the definition of the control u(t)
and the restriction on E(t) ≥ 0 , D(t) ≥ 0 and C(t) ≥ 0, we see that a solution
of the system (1) exists [2].

3.2 Existence of an optimal control

Theorem 3.3.
Consider the control problem with system (1). There exists an optimal control
u∗ ∈ U such that J (u∗) = min

u∈U
J (u)

Proof : The existence of the optimal control can be obtained using a result
by Fleming and Rishel [7], checking the following steps :

• From theorem 3.1 and theorem 3.2 it follows that the set of controls and
corresponding state variables is nonempty.

• J (u) =

∫ T

0

(
D(t) + C(t) + Au2(t)

)
dt is convex in u

• The control space U = {u/u are measurable, 0 ≤ u(t) ≤ 1, t ∈ [0, T ]}. is
convex and closed by definition.

• All the right hand sides of equations of system (1) are continuous, bounded
above by a sum of bounded control and state, and can be written as a
linear function of u with coefficients depending on time and state.

• The integrand in the objective functional, D(t)+C(t)+Au2(t), is clearly
convex on U
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• it rest to show that there exists constants α1, α2 > 0, and α > 1 such
that D(t) + C(t) + Au2(t) satisfies D(t) + C(t) + Au2(t) ≥ α1 + α2|u|α.
The state variables being bounded, let α1 = 1/2 inf

t∈[0,T ]
(D(t), C(t)), α2 =

A and α = 2 then it follows that: D(t) + C(t) + Au2(t) ≥ α1 + α2|u|2
Then from Fleming and Rishel [[7], p 68-69] we conclude that there exists an
optimal control.

3.3 Characterization of the optimal control

The necessary conditions for the optimal control arise from the Pontryagin’s
maximum principle [10]

Theorem 3.4. Given an optimal control u∗ and solutions E∗, C∗ and D∗

of the corresponding state system (1), there exist adjoint variables λ1, λ2 and
λ3 satisfying

=⇒
⎧⎨
⎩

λ′
1 = (λ1 − λ2)(1 − u∗)β1 + (λ1 − λ3)(1 − u∗)β3 + μλ1

λ′
2 = −1 + β2(1 − u∗)(λ2 − λ3) + μλ2

λ′
3 = −1 + (λ3 − λ2)γ + λ3(μ + ν + δ)

With transversality conditions:λ1(T ) = λ2(T ) = λ3(T ) = 0
Moreover the optimal control is given by

u∗ = min(1, max(0,
1

2A
[E∗β1(λ2 − λ1) + E∗β3(λ3 − λ1) + D∗β2(λ3 − λ2)]))

Proof : The Hamiltonian is defined as follows:
H = D + C + Au2 + λ1f1(E

∗, D∗, C∗) + λ2f2(E
∗, D∗, C∗) + λ3f3(E

∗, D∗, C∗)
where :
f1(E, C, D) = I − (μ + (β3 + β1)(1 − u(t)))E(t)
f2(E, C, D) = β1(1 − u(t))E(t) − (μ + β2(1 − u(t)))D(t) + γC(t)
f3(E, C, D) = β3(1 − u(t))E(t) + β2(1 − u(t))D(t) − (μ + γ + ν + δ)C(t)
The optimal control can be determined from the optimality condition :
dH
du

= 0

=⇒ 2Au+λ1(β1 +β3)E(t)+λ2(−β1E(t)+β2D(t))−λ3(β3E(t)+β2D(t)) = 0
=⇒ u∗ = 1

2A
[β1E

∗(λ2 − λ1) + β3E
∗(λ3 − λ1) + β2D

∗(λ3 − λ2)]
The adjoint variables λ1, λ2 and λ3 are obtained by the following system:

λ′
1 = −dH

dE
= (λ1 − λ2)(1 − u∗)β1 + (λ1 − λ3)(1 − u∗)β3 + μλ1

λ′
2 = −dH

dD
= −1 + λ2(μ + β2(1 − u∗)) − λ3β2(1 − u∗)

= −1 + β2(1 − u∗)(λ2 − λ3) + μλ2

λ′
3 = −dH

dC
= −1 + (λ3 − λ2)γ + λ3(μ + ν + δ)
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=⇒

⎧⎪⎪⎨
⎪⎪⎩

λ′
1 = (λ1 − λ2)(1 − u∗)β1 + (λ1 − λ3)(1 − u∗)β3 + μλ1

λ′
2 = −1 + β2(1 − u∗)(λ2 − λ3) + μλ2

λ′
3 = −1 + (λ3 − λ2)γ + λ3(μ + ν + δ)

λ1(T ) = λ2(T ) = λ3(T ) = 0

4 Numerical simulation

To solve the system (1) numerically we will use the method Gauss-Seidel-like
implicit finite-difference finite-difference method developed by Gumel et al. [8].

The time interval [t0, T ] is discretized with a step h (time step size) such
that ti = t0 + ih i = 0, 1, · · · , n and tn = T
So at each point ti we will note Ei = E(ti), Di = D(ti), Ci = C(ti),
λi

1 = λ1(ti), λi
2 = λ2(ti), λi

3 = λ3(ti), and ui = u(ti)
For the approximation of the derivative we used simultaneously forward differ-

ence for
dE(t)

dt
,

dD(t)
dt

and
dC(t)

dt
and backward difference for

dλ1(t)
dt

,
dλ2(t)

dt

and
dλ3(t)

dt
.

So the derivatives
dE(t)

dt
,

dD(t)
dt

and
dC(t)

dt
are approached by the following

finite differences: for i = 0, · · · , n − 1

dEi+1

dt
≈ Ei+1 − Ei

h
,

dDi+1

dt
≈ Di+1 − Di

h
and

dCi+1

dt
≈ Ci+1 − Ci

h

Similarly,
dλ1(t)

dt
,

dλ2(t)
dt

and
dλ3(t)

dt
are approached by finite differences

dλn−i
1

dt
≈ λn−i

1 − λn−i−1
1

h
,

dλn−i
2

dt
≈ λn−i

2 − λn−i−1
2

h
and

dλn−i
3

dt
≈ λn−i

3 − λn−i−1
3

h
for i = 0, · · · , n − 1.
Hence the problem is given by the following numerical scheme for i = 0, · · · , n−
1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei+1 − Ei

h
= I − (μ + (β3 + β1)(1 − ui))Ei+1

Di+1 − Di

h
= β1(1 − ui)Ei+1 − (μ + β2(1 − ui))Di+1 + γCi

Ci+1 − Ci

h
= β3(1 − ui)Ei+1 + β2(1 − ui)Di+1 − (μ + γ + ν + δ)Ci+1

λn−i
1 − λn−i−1

1
h

= (λn−i−1
1 − λn−i

2 )(1 − ui)β1 + (λn−i−1
1 − λn−i

3 )(1 − ui)β3 + μλn−i−1
1

λn−i
2 − λn−i−1

2
h

= −1 + β2(1 − ui)(λ
n−i−1
2 − λn−i

3 ) + μλn−i−1
2

λn−i
3 − λn−i−1

3
h

= −1 + (λn−i−1
3 − λn−i−1

2 )γ + λn−i−1
3 (μ + ν + δ)

Then we consider : E0 = E(0), D0 = D(0), C0 = C(0), u0 = 0, λn
1 = 0, λn

2 = 0
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and λn
3 = 0 so for i = 0, · · · , n − 1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ei+1 = hI + Ei

1 + h(μ + (β3 + β1)(1 − ui))

Di+1 =
Di + hβ1(1 − ui)Ei+1 + hγCi

1 + h(μ + β2(1 − ui))

Ci+1 =
Ci + hβ3(1 − ui)Ei+1 + hβ2(1 − ui)Di+1

1 + (μ + γ + ν + δ)h

λn−i−1
1 =

λn−i
1 + λn−i

2 (1 − ui)hβ1 + λn−i
3 (1 − ui)hβ3

1 + hμ + (1 − ui)h(β1 + β3)

λn−i−1
2 =

λn−i
2 + β2(1 − ui)hλn−i

3 + h
1 + h(μ + β2(1 − ui))

λn−i−1
3 =

λn−i
3 + λn−i−1

2 hγ + h
1 + h(μ + γ + ν + δ)

M i+1 = 1
2A

[
β1Ei+1(λ

n−i−1
2 − λn−i−1

1 ) + β3Ei+1(λ
n−i−1
3 − λn−i−1

1 )
]

+ 1
2A

[
β2Di+1(λ

n−i−1
3 − λn−i−1

2 )
]

ui+1 = min(1, max(0, M i+1))

Different simulations can be carried out using various values of parameters. In
the present numerical approach, we use the following parameters values taken
from [4]:

Parameter Value yr−1

μ 0.02
ν 0.05
γ 0.08
δ 0.05

Parameter Value yr−1

I 2000000
β1 0.5
β2 0.1
β3 0.5

Table 1: Parameter vales used in numerical simulation

E(0) = 6660000; D(0) = 10200000; C(0) = 5500000; n = 1000; h = 0.01;
T = nh = 10 years λ1(n) = 0; λ2(n) = 0; λ3(n) = 0;
Since control and state functions are on different scales, the weight constant
value is chosen as follows: A = 3550000;

5 Conclusion

As indicated in the introduction section, the burden of diabetes can be reduced
at three levels by controlling: 1) the number of people evolving from pre-
diabetes to diabetes without complication (β1(1 − u(t))), 2) the number of
diabetic patients developing complications (β2(1−u(t))) and 3) the number of
people evolving directly from pre-diabetes to diabetes with complications due
to delayed diagnosis ( β3(1−u(t)) ). Our model shows that, in a period of ten
years, the population of diabetics without complications (D(t)) will increase
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Initial population (106) E(0) = 6.66 D(0) = 10.20 C(0) = 5.50
Population after 10 years
without optimal control
(106)

E1(n) = 1.96

70% decrease

D1(n) = 14.30

40% increase

C1(n) = 11.25

104% increase
Population after 10 years
with optimal control (106)

E2(n) = 18.72

181% increase

D2(n) = 14.30

24% increase

C2(n) = 11.25

74% decrease
Difference due to optimal
control (106)

E2(n)−E1(n)
= − 16.76

D2(n)−D1(n)
= 1.68

C2(n)−C1(n)
= 9.82

Table 2: Simulation results and growth rates for E(T ), D(T ) and C(T )
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Figure 1: The effect of optimal control on the dynamics of the population of
pre-diabetics and diabetics with and without complications

by 26% and 40% with and without control respectively. More importantly,
the population of diabetics with complications will increase by 104% without
control while it will decrease by 74% in presence of optimal control (Table2,
Figure1). This is not a mere mathematical result, pragmatic achievements can
be obtained by sensitization for a healthy diet, promotion of physical activity,
obesity control and smoking reduction. An optimal strategy will also need
early diagnosis of diabetes and affordable treatment and healthcare in order
to avoid complications or at least to delay their occurrence as far as possible.
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